
OHemisphere®

875-0421-10

Phantom™ 40 GNSS OEM Board

Integrator Guide **Revision: A3**October 22, 2020

Table of Contents

Device Compliance, License and Patents	4
Phantom 40 Terms & Definitions	6
Chapter 1: Introduction	9
Overview	9
Product Overview	10
Key Features	12
What's Included in Your Kit	13
Firmware	14
Using PocketMax™ to Communicate with the Phanto	om 4014
Athena RTK and Atlas L-band	15
aRTK Position Aiding	16
Chapter 2: Integrating your Phantom 40 OEM Board	17
Overview	17
Phantom 40 Integration	18
Mechanical Layout	19
Connectors	20
Mounting Options	22
Header Layouts and Pin-outs	23
Signals	33
Ports	33
CAN	37
Chapter 3: Understanding the Phantom 40 OEM Board	38
Overview	38
Timing Signal	39
Event Marker Input	40
Grounds	40
Shielding	40
Receiver Mounting	41
Chapter 4: Operating the Phantom 40 OEM Board	42

	Overview	42
	Powering the Phantom 40 On/Off	43
	Communicating with the Phantom 40	43
	Configuring the Phantom 40	43
	LED Indicators	44
	Configuring the Data Message Output	45
	'THIS' Port and the 'OTHER' Port	45
	Saving the Phantom 40 Configuration	47
	Using the Phantom 40 WebUI	48
Арр	endix A: Troubleshooting	59
	Overview	59
	Troubleshooting	60
Арр	endix B: Technical Specifications	62
	Phantom 40 Technical Specifications	63
Арр	endix C: Frequently Asked Questions (FAQ)	68
	Overview	68
	FAQ	69
	Index	78
	End User License Agreement	79
	Warranty Notice	83

Device Compliance, License and Patents

Device Compliance

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference, and
- 2. this device must accept any interference received, including interference that may cause undesired operation.

This product complies with the essential requirements and other relevant provisions of Directive 2014/53/EU. The declaration of conformity may be consulted at https://hemispheregnss.com/About-Us/Quality-Commitment.

E-Mark Statement: This product is not to be used for driverless/autonomous driving.

Copyright Notice

Copyright Hemisphere GNSS, Inc. (2020). All rights reserved.

No part of this manual may be reproduced, transmitted, transcribed, stored in a retrieval system or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of Hemisphere GNSS.

Trademarks

Hemisphere GNSS®, the Hemisphere GNSS logo, TRACERTM, Crescent®, EclipseTM, e-Diff®, L-Diff™, PocketMax4TM, S320TM, SBX-4TM, VectorTM, XF1TM, and XF2TM are proprietary trademarks of Hemisphere GNSS, Inc. Other trademarks are the properties of their respective owners.

Patents

Hemisphere GNSS products may be covered by one or more of the following patents:

Patents			
6111549	6876920	7400956	8000381
6397147	7142956	7429952	8018376
6469663	7162348	7437230	8085196
6501346	7277792	7460942	8102325
6539303	7292185	7689354	8138970
6549091	7292186	7808428	8140223
6711501	7373231	7835832	8174437
6744404	7388539	7885745	8184050
6865465	7400294	7948769	8190337
8214111	8217833	8265826	8271194
8307535	8311696	8334804	RE41358

Australia Patents	
2002244539	2002325645
2004320401	

Device Compliance, License and Patents, Continued

Notice to Customers

Contact your local dealer for technical assistance. To find the authorized dealer near you:

Hemisphere GNSS, Inc 8515 East Anderson Drive Scottsdale, AZ 85255 USA Phone: (480) 348-6380 Fax: (480) 270-5070 PRECISION@HGNSS.COM WWW.HGNSS.COM

Technical Support

If you need to contact Hemisphere GNSS Technical Support:

Hemisphere GNSS, Inc. 8515 East Anderson Drive Scottsdale, AZ 85255 USA Phone: (480) 348-6380 Fax: (480) 270-5070 SUPPORT.HGNSS.COM

Documentation Feedback

Hemisphere GNSS is committed to the quality and continuous improvement of our products and services. We urge you to provide Hemisphere GNSS with any feedback regarding this guide by opening a support case at the following website: SUPPORT.HGNSS.COM

Phantom 40 Terms & Definitions

Introduction

The following table lists the terms and definitions used in this document.

Phantom 40 terms & definitions

Term	Definition
Activation	Activation refers to a feature added through a one-
	time purchase. For features that require recurring
	fees, see Subscription .
ASCII	American Standard Code for Information Interchange
Atlas	Atlas is a subscription-based service provided by
	Hemisphere GNSS.
BeiDou	BeiDou is a global navigation satellite system deployed
	and maintained by China.
BIN message	Binary message
dB	Decibel. The unit of measurement used to express
	signal-to-noise ratio (SNR).
Firmware	Firmware is the software loaded into the receiver that
	controls the functionality of the receiver and runs the
	GNSS engine.
Galileo	Galileo is a global navigation satellite system deployed
	and maintained by the European Union and European
	Space Agency.
GLONASS	Global Orbiting Navigation Satellite System (GLONASS)
	is a Global Navigation Satellite System deployed and
	maintained by Russia.

Phantom 40 Terms & Definitions, Continued

Phantom 40 terms & definitions, continued

Term	Definition		
GNSS	Global Navigation Satellite System (GNSS) is a system that		
	provides autonomous 3D position (latitude, longitude,		
	and altitude) and accurate timing globally by using		
	satellites. Current GNSS providers are: GPS, GLONASS,		
	Galileo, BeiDou, NavIC (IRNSS) and QZSS.		
GPS	Global Positioning System (GPS) is a global navigation		
	satellite system deployed and maintained by the United		
	States.		
I/O	Input/Output		
LED	Light Emitting Diode		
Multipath	Multipath occurs when the GNSS signal reaches the		
	antenna by two or more paths. This causes incorrect		
	pseudo-range measurements and leads to less precise		
	GNSS solutions.		
NavIC	Navigation with Indian Constellation. Indian Regional		
(IRNSS)	Navigational Satellite System (IRNSS) is a regional		
navigation satellite system deployed and maintained			
	India.		
NMEA	National Marine Electronics Association (NMEA) is a		
	marine electronics organization that sets standards for		
	communication between marine electronics.		
NTRIP	Networked transport of RTCM via Internet Protocol – a		
	protocol for transmitting differential GNSS or RTK over		
	the internet.		
PCB	Printed Circuit Board		
PPS	Pulse-per-second is a pulse output by the receiver		
	precisely once per second and is used for hardware		
	synchronization.		
QZSS	Quasi-Zenith Satellite System (QZSS) is a regional satellite		
	navigation system deployed and maintained by Japan.		
RF	Radio Frequency		

Phantom 40 Terms & Definitions, Continued

Phantom 40 terms & definitions, continued

Term	Definition		
RMS	Root mean square		
ROX	ROX is a Hemisphere GNSS propriety RTK message		
	format that can be used as an alternative to RTCM3		
	when both the base and rover are Hemisphere		
	branded.		
RTCM	Radio Technical Commission for Maritime Services		
	(RTCM) is a standard used to define RTK message		
	formats so that receivers from any manufacturer can		
	be used together.		
RTK	Real-Time-Kinematic (RTK) is a real-time GNSS		
	differential method that provides better accuracy		
	compared to other differential corrections.		
SBAS	Satellite Based Augmentation System (SBAS) is a system		
	that provides differential corrections over satellite		
	throughout a wide area or region.		
SNR	Signal-to-Noise ratio		
Subscription	A subscription is a feature that is enabled for a limited		
	time. Once the end-date of the subscription has been		
	reached, the feature will turn off until the subscription		
	is renewed.		
TVS	Transient Voltage Suppressors		
UART	Universal Asynchronous Receiver/Transmitter (UART) is		
	the electronic circuit that makes up the serial port.		
WAAS	Wide Area Augmentation System (WAAS) is a satellite-		
	based augmentation system (SBAS) that provides free		
	differential corrections over satellite in parts of North		
	America.		

Chapter 1: Introduction

Overview

Introduction

This Integrator Guide helps you integrate your Phantom 40 GNSS OEM Board with your positioning product. You can download this manual from the Hemisphere GNSS website at www.hgnss.com.

This manual does not cover receiver operation, the PocketMax utility, or commands and messages (NMEA 0183, NMEA 2000® or HGNSS proprietary messages). For information on these subjects refer to the Hemisphere GNSS (HGNSS) Technical Reference Manual (TRM).

Contents

Topic	See Page
Product Overview	10
Key Features	12
What's Included in Your Kit	13
Firmware	14
Using PocketMax [™] to Communicate with the Phantom	14
40	
Athena RTK and Atlas L-band	15
aRTK Position Aiding	16

Product Overview

Product overview

The Phantom 40 is Hemisphere's most advanced GNSS positioning board. Phantom 40 leverages full performance and fast RTK initialization times over long distances with multi-frequency, multi-constellation GNSS signals.

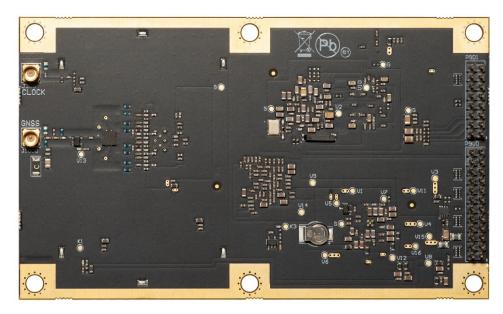


Figure 1-1: Phantom 40 GNSS OEM Board

The Phantom 40 is an accurate and reliable OEM module with two advanced technology features and aRTK™. Hemisphere's aRTK technology, powered by Atlas®, allows the Phantom 40 to operate with RTK accuracies when RTK corrections fail. Tracer uses specialized algorithms to sustain positioning in the absence of correction data.

Product Overview, Continued

Product overview, continued

The Phantom 40 uses centimeter-level accuracy in either single frequency mode or employs the full performance and fast RTK initialization times over long distances with multi-frequency, multi-constellation GNSS signals.

The Phantom 40's high-accuracy L-band positioning from meter to subdecimeter levels is available via the HGNSS Atlas GNSS correction service.

For information on these subjects refer to the HGNSS TRM.

Key Features

Phantom 40 key features

The Phantom 40 is offered in the common industry form factor (100L x 60W mm) with low power consumption and simple on-board firmware with integrated L-band.

The Phantom 40 is an ideal solution for integrators, offering scalability and expandability from L1 GPS with SBAS to multi-frequency GPS, GLONASS, BeiDou, Galileo, NavIC (IRNSS)*, and QZSS (with RTK capability).

*NavIC (IRNSS) will be available with a future firmware update.

The reliable positioning performance of Phantom 40 is enhanced by Athena™ RTK, Atlas corrections and aRTK technology.

With the Phantom 40, positioning is scalable and field upgradeable with all Hemisphere software and service options. Use centimeter-level accuracy in single frequency mode or employ the full performance and fast RTK initialization times over long distances with multi-frequency, multi-constellation GNSS signals. High-accuracy L-band positioning from meter to sub-decimeter levels are available via the Hemisphere Atlas correction service.

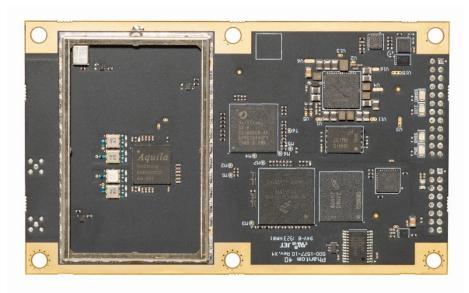


Figure 1-2: Phantom 40 GNSS OEM Board

Key Features, Continued

Phantom 40 key features

Key features of the Phantom 40 include:

Multi-Frequency GPS, GLONASS, BeiDou, Galileo, and QZSS	Mechanically and electrically (pin- for-pin) compatible with many other manufacturers' modules
 Long-range RTK baselines up to 50 km with fast acquisition times 	Atlas® L-band capable to 4 cm RMS
Compatible with many RTK sources including Hemisphere GNSS' ROX format, RTCM, CMR, CMR+	Athena™ GNSS engine providing best-in-class RTK performance
Serial, USB, Ethernet, and CAN connectivity	

For complete specifications of the Phantom 40 board, see Appendix B Technical Specifications.

What's Included in Your Kit

Kit contents

The Phantom 40 board is available in two configurations:

- Phantom 40 OEM board only designed for integrators who are familiar with Hemisphere board integration (P/N 725-1592-10).
- Phantom 40 OEM board and Phantom 40 adapter board (by request only P/N 725-1521-0).

For more information on requesting the Phantom 40 adapter board, go to the HGNSS OEM Products page, or contact your local dealer.

Firmware

Firmware

The software that runs the Phantom 40 OEM GNSS board is often referred to as firmware since it operates at a low level.

The Phantom 40 currently ships loaded with the Athena-based firmware. Refer to the HGNSS TRM for information on querying and communicating with the Phantom 40 board.

You can upgrade the firmware when in the field through any serial port as new versions become available.

Using PocketMax™ to Communicate with the Phantom 40

PocketMax

Hemisphere's PocketMax is a free utility program that runs on your Windows PC or Windows mobile device. Simply connect your Windows device to the Phantom 40 via the COM port and open PocketMax.

The screens within PocketMax allow you to easily interface with the Phantom 40 to:

- Select the internal SBAS or RTCM correction source, and monitor reception (beacon optional)
- Configure GPS message output and port settings
- Record various types of data
- Monitor the Phantom 40 status and function

PocketMax is available for download from the Hemisphere GNSS website (https://www.hemispheregnss.com/firmware-software/).

Athena RTK and Atlas L-band

Athena RTK

Athena RTK is Hemisphere's next-generation RTK engine designed to support all available constellations and takes advantage of available new signals. Athena was designed to seamlessly integrate into existing product portfolios and supports all major industry correction formats and standards.

Athena RTK can be added to the Phantom 40 as an activation.

Athena RTK has the following benefits:

- Improved Initialization time Performing initializations in less than 15 seconds at better than 99.9% of the time.
- Robustness in difficult operating environments Extremely high productivity under the most aggressive of geographic and landscapeoriented environments.
- **Performance on long baselines** Industry-leading position stability for long baseline applications.

For more information about Athena RTK, see: HTTPS://WWW.HEMISPHEREGNSS.COM/TECHNOLOGY/#ATHENA

Atlas L-band

Atlas L-band is Hemisphere's industry leading correction service and can be added to the Phantom 40 as a subscription. Atlas L-band has the following benefits:

- **Positioning accuracy** Competitive positioning accuracies down to 4 cm RMS in certain applications.
- **Positioning sustainability** Cutting edge position quality maintenance in the absence of correction signals, using Hemisphere's patented technology.
- Scalable service levels Capable of providing virtually any accuracy, precision and repeatability level in the 4 cm to 50 cm range.
- Convergence time Industry-leading convergence times of 10-40 minutes.
- Global Ionospheric Model Real-time ionospheric activity and data is sent to the receiver and allows Atlas-capable devices to adjust accordingly, providing excellent convergence performance.

For more information about Atlas L-band, see: HTTP://HGNSS.COM/ATLAS

aRTK Position Aiding

aRTK position aiding

aRTK is an innovative feature available in Hemisphere's Phantom 40 that greatly mitigates the impact of land-based communication instability.

Powered by Hemisphere's Atlas L-band system service, aRTK augments the ability to maintain an RTK solution when the original RTK data link is lost or interrupted. The aRTK provides an additional layer of communication redundancy to RTK users, assuring that productivity is not impacted by intermittent data connectivity.

Phantom 40 receives aRTK augmentation correction data over satellite, while also receiving the land-based RTK correction data. The receiver internally operates with two sources of RTK correction, creating one additional layer of correction redundancy as compared to typical RTK systems.

After a few seconds of RTK correction loss aRTK is established. The receiver uses Atlas corrections in the absence of RTK. This allows for a slower degradation of accuracy until RTK corrections resume.

Chapter 2: Integrating your Phantom 40 OEM Board

Overview

Introduction

This chapter provides instructions on how to integrate your Phantom 40 board with your positioning product.

Contents

Topic	See Page
Phantom 40 Integration	18
Mechanical Layout	19
Connectors	20
Mounting Options	22
Header Layouts and Pin-outs	23
Signals	33
Ports	33
CAN	37

Phantom 40 Integration

Overview

Successful integration of the Phantom 40 within a system requires electronics expertise that includes:

- Power supply design knowledge
- Serial port level translation
- Radio frequency competency
- An understanding of electromagnetic compatibility
- Circuit design and layout knowledge

Phantom 40 integration requirements

The Phantom 40 board is a low-level module intended for custom integration with the following general integration requirements:

- Regulated power supply input (3.3 VDC ± 3%) and 850 mA continuous maximum
- Radio frequency (RF) input to the engine from a GNSS antenna is required to be amplified (10 to 35 dB gain)
- The Phantom 40 supplies 5V for the antenna (no separate source is required)
- \bullet Antenna input impedance is 50 Ω

Message interface

The Phantom 40 can be configured (message output and receiver configuration) over serial (3.3V UART), USB, or Ethernet with ASCII commands published in the HGNSS TRM.

You can output standard NMEA 0183 messages and proprietary Hemisphere ASCII and binary messages over serial, USB, and Ethernet. For more information on NMEA 0183 commands and messages as well as binary messages, refer to the HGNSS TRM.

You can output NMEA 2000 and some Hemisphere proprietary messages over CAN. Refer to the Hemisphere GNSS NMEA 2000 manual.

Mechanical Layout

Phantom 40 mechanical layout

Figure 2-1 shows the mechanical layout for the Phantom 40 GNSS OEM board. Dimensions are in millimeters for all layouts.

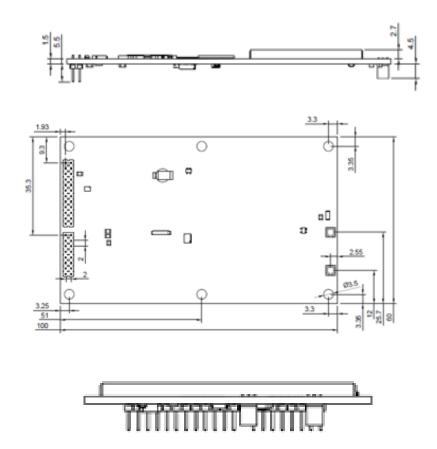


Figure 2-1: Phantom 40 mechanical layout

Connectors

Phantom 40 connectors

Table 2-1 lists the Phantom 40 connectors and mating connectors. You can use different compatible connectors; however, the requirements may be different. The antenna input impedance is $50~\Omega$.

Table 2-1: Phantom 40 connectors

Eclipse™ Board and Connector Type		SMT Connector	Mating Connector
Phantom 40	RF	MMCX, female	MMCX, male straight
		straight jack	plug
		Emerson (Johnson) 133-3711-202	Samtec RSP-127824-01
	Power	24-pin (12x2) male	Board Mates: CLT,
	/ data	header	ESQT, MMS, SMM, SQT,
		0.078 in (2 mm) pitch	SQW, TLE
		Samtec TMM-112-03- T-D	Cable Mates: TCSD
	Power	16-pin (8x2) male header,	Board Mates: Samtec
	/data	0.078 in (2 mm) pitch	CLT, ESQT, MMS, SMM,
			SQT, SQW, TLE
		Samtec TMM-108-03- G-D	Eg: Samtec TLE-108-01-
			G-DV-K
			Cable Mates: TCSD

Connectors, Continued

Phantom 40 connectors, continued

Figure 2-2: Phantom 40 Connectors

Mounting Options

Overview

There are two options for mounting the Phantom 40:

- 1. Direct Electrical Connection method
- Indirect Electrical Connection (cable) method

Direct electrical connection

Place an RF connector, the header connector, and the mounting holes on the carrier board, and then mount the Phantom 40 on the standoffs and RF and header connectors. This method is very cost effective because it eliminates cable assemblies to interface with the Phantom 40.

Note: Use care when routing RF traces. Trace impedance shall be 50 ohms. Ensure the trace has no breaks in the ground plane beneath it and that the RF trace does not cross or run adjacent to power or data traces.

Use metal standoffs, bolts, nuts, or screws. Plastic or nylon standoffs are not appropriate for vibration concerns. Avoid PCB snap-in place standoffs. The pressure and snapping action add undue stress on the board and compromises solder integrity. Metal standoffs help heat dissipate from the GNSS board.

The Phantom 40 uses a standoff height of 7.93 mm (0.3125 in). With this height, there should be no washers between either the standoff and the Phantom 40 or the standoff and the carrier board. You may need to change the standoff height if you select a different header connector.

There are two common methods to create a direct electrical connection:

- Use a right angle MMCX connector. You must use a taller header than the Samtec part number suggested in this guide. This provides the clearance to for a right-angle cable-mount connector and eliminates the need for the carrier board to handle the RF signals.
- Use the standard headers and create a PCB cutout for the antenna connector.

Note: See Table 2-1 for Phantom 40 connector information. The mounting holes of the Phantom 40 have a standard inner diameter of 3.50 mm (0.138 in).

Mounting Options, Continued

Indirect electrical connection (cable) method

The second method is to mount the Phantom 40 mechanically, so you can connect a ribbon power/data cable to the Phantom 40. This requires cable assemblies and there is a reliability factor present with cable assemblies in addition to increased expense.

Header Layouts and Pin-outs

Phantom 40 pinouts The Phantom 40 uses a dual-row header connector to interface with power, communications, and other signals.

To identify the first header pin, orient the board so the bar is to the upper left of the pins; the first pin is on the left directly below the bar (see Figure 2-2). The pins are then sequentially numbered per row from top-to-bottom.

Figure 2-3 shows the Phantom 40 24-pin header layout.

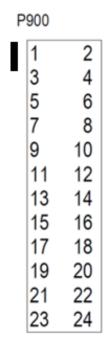


Figure 2-3: Phantom 40 24-pin header layout

Phantom 40 pinouts, continued The Vega 40 board has a 24-pin header. Table 2-2 provides the 24-pin header pin-out signals and descriptions.

Note: Pins are not 5 V tolerant. The pin voltage range is 0 to 3.3 VDC, unless otherwise noted. Leave any data or I/O pins that will not be used unconnected.

Table 2-2: Phantom 40 24-pin header pin-out

Pin	Signal	Signal	Signal	Description
	Name	Туре	Direction	
1	GND	Power	-	Ground reference
2	USER1	3.3V	Input/	User GPIO
		CMOS	Output	
				Internal 10 kΩ pulldown.
3	VARF	3.3V	Output	Variable Frequency Output.
		CMOS		Edges can be synchronized to
				the GNSS time reference.
				Internal 10 kΩ pullup
4	PPS	3.3V	Output	Pulse Per Second output.
		CMOS		(1,2,5, or 10Hz, programmable
				width, rising or falling edge)
				This signal defaults to one
				pulse per second but may be
				altered across a wide range of
				frequencies using software
				commands. Edges can be
				synchronized to GNSS time
				reference.
5	3.3V	Power	-	3.3 V ±5% supply input
6	3.3V	Power	-	3.3 V ±5% supply input

Phantom 40 pinouts, continued

Table 2-2: Phantom 40 24-pin header pin-out (continued)

Pin	Signal Name	Signal Type	Signal Direction	Description
7	Port C (default)	3.3V CMOS	Input	Dual use pin:
	RX/ EVENT2			Port-C (UART), Receive data input
				Event2 Manual Mark input: Rising or falling edge triggered. This input is used to provide a position or time data log based on an external trigger. Internal $10 \text{ k}\Omega$ pullup.
8	EVENT 1	3.3V CMOS	Input	Event1 Manual Mark input: Rising or falling edge triggered. This input is used to provide a position or time data log based on an external trigger.
				Internal 10 kΩ pullup.

Phantom 40 pinouts, continued

Table 2-2: Phantom 40 24-pin header pin-out (continued)

Pin	Signal	Signal Type	Signal	Description
	Name		Direction	
9	ERROR	3.3V CMOS	Output	Error output
				Normally low. A high output
				on this pin indicates that the
				receiver is in an error state.
				Internal 10 kΩ pulldown.
10	PV	3.3V CMOS	Output	Position Valid output
				A high output on this pin
				indicates that the receiver
				has computed a valid GNSS
				position.
				Internal 10 kΩ pulldown.
11	Port B	3.3V CMOS	Input	Port B (UART), Clear to
	(default)		·	Send* input
	CTS			This is an optional flow
				control signal* for the Port
				B.
				Internal weak (40 kΩ to 100
				$k\Omega$) pullup.

Phantom 40 pinouts, continued

Table 2-2: Phantom 40 24-pin header pin-out (continued)

Pin	Signal Name	Signal Type	Signal Direction	Description
12	RESET	3.3V CMOS	Input	Active Low. Resets the Phantom 40 receiver card. This pin must be held low for a minimum of 100 microseconds to guarantee operation. Internal 10
13	Port B (default) RTS	3.3V CMOS	Output	kΩ pullup. Port B (UART), Request to Send* output. This is an optional flow control signal for the Port B RTS.
14	Port B RX	3.3V CMOS	Input	Port B (UART), Receive data input. Internal weak (40 k Ω to 100 k Ω) pullup.
15	Port A (default) CTS / Port A RXD-	RS- 232/RS- 422*	Input	Dual use pin: Port A RS-232 CTS is the default. Clear to Send* input. This is an optional flow control* signal for the Port A CTS. Port A RS-422 differential receive RXD. This is one half of the PortA-RS-422 receive differential pair (2V differential typical)

*Requires a future firmware update.

Phantom 40 pinouts, continued

Table 2-2: Phantom 40 24-pin header pin-out (continued)

Pin	Signal	Signal	Signal	Description
	Name	Туре	Direction	
16	Port B TX	3.3V	Output	Port B (UART), Data Transmit
		CMOS		output
17	Port A (default)	RS-232 /RS-422*	Output	Dual use pin:
	RTS /			Port A RTS RS-232 Request to
	Port A			Send* output. This is an
	TXD-			optional flow control* signal
				for Port A. Port A TXD RS-422*.
				This is one half of the Port A
				RS-422* transmit differential
				pair (2V differential typical).
18	Port A RX (default)	RS- 232/RS-	Input	Dual use pin:
	/ Port A	422*		Port A RX is the default.
	RX-			Port A RX: Port A Receive Data
				input. Port A RXD+: This is one
				half of the Port A RS-422*
				receive differential pair. (2V
				differential typical)
19	Port C TX	3.3V	Output/	Dual use pin:
	(default)/	CMOS	Input	
	USER0			Default: Port C TX (UART)
				Port C TX: Transmit Data
				output.
				USER0: User GPIO. Internal 10 kΩ pulldown.

*Requires a future firmware update.

Phantom 40 pinouts, continued

Table 2-2: Phantom 40 24-pin header pin-out (continued)

Pin	Signal Name	Signal Type	Signal Direction	Description
20	Port A TX (default)/ Port A TX+	RS- 232/RS- 422*	Output	Dual use pin: Default: Port A TX
		122		Port A TX: Port A Transmit Data output. Port A TXD+: This is one half of the Port A RS-422* transmit differential pair (2V differential typical).
21	USB D-	Analog	Input/ Output	USB device signal. This is one half of a USB differential pair. USB_D+ and USB_D- must be lengthmatched and route as 90 Ω differential pair.
22	USB D+	Analog	Input/ Output	USB device signal. This is one half of the USB differential pair. USB_D+ and USB_D- must be lengthmatched and routed as a 90 Ω differential pair.
23	GND	Power	-	Ground reference
24	GND	Power	-	Ground reference

*Requires a future firmware update.

Phantom 40 pinouts, continued The Phantom 40 board has a 16-pin header. Figure 2-4 shows the Phantom 16-pin header layout and Table 2-3 provides the Phantom 40 16-pin header pinout.

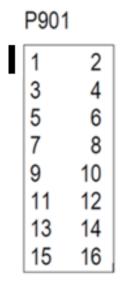


Figure 2-4: Phantom 40 16-pin header layout

Note: 3.3 V CMOS pins are not 5 V tolerant. The pin voltage range is 0 to 3.3 VDC, unless otherwise noted. Leave any data or I/O pins that will not be used unconnected.

Phantom 40 pinouts, continued, continued

Table 2-3: Phantom 40 16-pin header pin-out

Pin	Signal	Signal	Signal	Description
	Name	Type	Direction	
1	ENET RD-	Ethernet	Input	This is one half of the
				Ethernet receive differential
				pair (100 Ω pair).
2	ENET RD+	Ethernet	Input	This is one half of the
				Ethernet receive differential
				pair (100 Ω pair).
3	ENET BIAS	Ethernet	-	Center tap power for
				Ethernet magnetics.
4	ENET TX+	Ethernet	Output	This is one half of the
				Ethernet transmit
				differential pair (100 Ω
				pair).
5	ENET TD	Ethernet	Output	This is one half of the
				Ethernet transmit
				differential pair (100 Ω
				pair).
6	ENET BIAS	Ethernet	-	Center tap power for
				Ethernet magnetics.
7	ENET LED	3.3V	Output	Activity/Link indicator
		CMOS		output.
				Polarity of the indicator
				signal is low. When there is
				an active link, the pin is low.
				When there is activity on
				the link, the pin outputs a
				blink signal.
8	CORR			Reserved for future use

Phantom 40 pinouts, continued, continued

Table 2-3: Phantom 40 16-pin header pin-out (continued)

Pin	Signal Name	Signal Type	Signal Direction	Description
9	GND	Power	-	Ground reference
10	CANA TX	3.3V CMOS	Output	CAN Port A Transmit data
11	CANA RX	3.3V CMOS	Input	CAN Port A Receive data
12	CANB TX	3.3V CMOS	Output	CAN Port B Transmit data
13	CANB RX	3.3V CMOS	Input	CAN Port B Receive data
14	USB ID	3.3V CMOS	Input	USB Port Mode USB-ID is read at boot to determine USB host or device. USB-ID high – Device mode USB-ID low – Host mode Leave this pin floating to ensure the USB port is in Device mode. Internal 10 kΩ pull up
15	USB VBUS	Power	-	5V output for hosted USB devices
16	GND	Power	-	Ground reference

Signals

Overview

This section provides information on the signals available on the Phantom 40 via connectors.

RF Input

The Phantom 40 is designed to work with active GNSS antennas with an LNA gain range of 10 to 35 dB. While the on-board Automatic Gain Control (AGC) circuitry will compensate for variations in signal level, system designers should try to have the antenna's gain offset the cable's loss with a 10-15dB margin. For example, a cable with a signal loss of 10 dB @ 1575 MHz should be used with a 25 dB gain antenna. Cable losses of more than 20 dB should be avoided and may require special system design.

Hemisphere's antennas typically have a 25 to 30 dB gain. They are designed to be paired with our 1m to 30m antenna cables which have between 2dB and 12 dB loss. This still allows a few dB margin for additional interconnection items and short interface cables in integrated products.

Ports

Serial ports

The Phantom 40 has three serial communication ports:

- Port A- RS-232/RS-422* Pin 18 (RX), input
 Pin 20 (TX), output Pin 15, input Pin 17, output
- Port B- 3.3V CMOS Pin 14 (RX), input
 Pin 16 (TX), output Pin 11, input Pin 13, output
- Port C- 3.3V CMOS
 Pin 7 (RX), input Pin 19 (TX), output

A transceiver is required if serial ports B or C (UART 3.3V CMOS) are used for external devices that use RS-232.

*RS-422 requires a future firmware update.

Ports, Continued

USB port

The Phantom 40 USB port serves as a high-speed data communications port.

The Phantom 40 USB data lines are bi-directional. The USB data lines should be laid out on printed circuit board (PCB) as a differential pair with 90 $\Omega\pm15\%$ differential impedance.

The traces should be over a solid continuous ground plane to maintain parallel traces and symmetry. There shall be no traces or breaks in the ground plane underneath the D+ and D- traces.

It is also recommended to leave a minimum 20 mil spacing between USB signals and other signals. Treat the data lines as if they are RF signals. USB Transient Voltage Suppressors (TVS's) should be considered on D+ and D- for transient and electrostatic discharge protection.

The full current state of Ethernet configuration may be checked with the command "\$JETHERNET". When Ethernet is disabled, the following response displays:

\$JETHERNET

\$>JETHERNET,MAC,8C-B7-F7-F0-00-01

\$>JETHERNET,MODE,OFF

\$>JETHERNET,PORTI,OFF

\$>JETHERNET,PORTUDP,OFF

\$>JETHERNET,NTRIPCLIENT,OFF

\$>JETHERNET,NTRIPSERVER,OFF

\$>JETHERNET,WEBUI,OFF

\$>JETHERNET,IPADDRESS,NONE

\$>JETHERNET,LINK,Offline

Ports, Continued

Enabling / disabling Ethernet

To enable Ethernet, determine if the receiver can be assigned an IP address automatically via DHCP, or statically assigned. If you are unsure, please contact your network administrator.

To enable Ethernet support with a DHCP-assigned IP address, simply use the command:

\$JETHERNET, MODE, DHCP

The receiver will attempt to get an address from the DHCP server on the network. You should be able to see the current IP address reported by a "\$JETHERNET" query change.

To enable Ethernet support with a statically assigned IP address, use the command:

\$JETHERNET, MODE, STATIC, ip, subnet, gateway, dns

In the previous command, ip/subnet/gateway/dns are each replaced with the relevant IP address. The gateway and dns parameters are optional, and only useful for allowing outgoing connections from the Phantom 40 (not currently supported). The following is an example command:

\$JETHERNET,MODE,STATIC,192.168.0.42,255.255.255.0.

To disable Ethernet, use the command:

\$JETHERNET, MODE, OFF

Ports, Continued

Enabling Ethernet services

With Ethernet enabled, you can test sending an Internet Control Message Protocol (ICMP) ping to the Phantom 40 receiver from a PC on the same network. No actual services are enabled on Ethernet by default, so to make practical use of Ethernet support, enable a service.

The only Ethernet service implemented is the PORTI virtual serial port. Additional types of Ethernet services may be implemented in future firmware versions.

The PORTI virtual serial port allows a listening TCP port to be opened, acting like a local serial port of the receiver. Only one TCP client may be connected at a time.

Note: Enabling "PORTI" on Ethernet should only be done with the Phantom 40 connected to a trusted network, since it gives full access to the receiver as a local serial port, and has no authentication or security mechanisms.

To enable the PORTI service, use the command **\$JETHERNET,PORTI, port** where port is replaced with the desired TCP port number. Any port in the range 1 to 65535 is allowable, but it is recommended to consider which TCP port numbers are typically reserved for various common protocols and avoid those port numbers.

To disable the PORTI service, use the command \$JETHERNET,PORTI,OFF

CAN

CAN transceiver

A CAN transceiver is required. The Phantom 40 CAN RX and CAN TX are 3.3V CMOS signals. The Phantom 40 connects to the transceiver on the single-ended CMOS port. CANH and CANL are CAN standard pins on the physical bus side of the transceiver. The Phantom 40 does not connect to this portion of the transceiver.

Note: Resistor values can vary based on application.

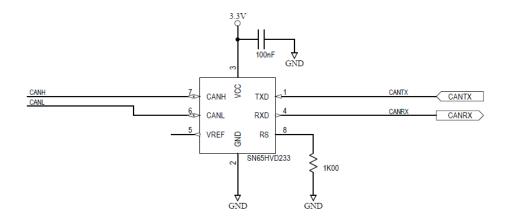


Figure 2-5: Phantom 40 CAN design example

Chapter 3: Understanding the Phantom 40 OEM Board

Overview

Introduction

Chapter 3 contains the information you need to understand the Phantom 40 OEM board signals and mounting.

Contents

Topic	See Page
Timing Signal	39
Event Marker Input	40
Grounds	40
Shielding	40
Receiver Mounting	41

Timing Signal

PPS timing signal

The pulse per second (PPS) timing signal is used in applications where devices require time synchronization.

Note: PPS is typical of most GNSS boards but not is essential to normal receiver operation. Do not connect this pin if you do not need this function.

The PPS is a 3.3v CMOS signal. By default, the PPS is a rising edge synchronized pulse occurring once per second with a width approximately 1 ms.

The Phantom 40 supports a programmable PPS. Users can select the frequency to be 1, 2, 5 or 10Hz. The pulse can be programmed as either active high (rising edge synchronized) or active low (falling edge synchronized). The Phantom 40 can support pulse widths as wide as 900 ms.

\$JPSS, RATE, <Rate_In_Hz (limited to 1.0 , 2.0 , 5.0 , 10.0 >, [SAVE]

or if you prefer to work with the period (inverse of RATE)

\$JPPS, PERIOD, < Period in seconds (limited to 1.0, 0.5, 0.2, 0.1) >, [SAVE]

PPS Width can be controlled using

\$JPPS,WIDTH,<width in \u03c4s (microseconds)>,[SAVE]

The width command parameter is in μ s (microseconds).

\$JPPS,ACTIVE EDGE,<RISE | FALL>,[SAVE]

Controls which edge of the PPS signal is synchronized to the GNSS second.

Note: \$JSAVE does NOT save the JPPS configuration. The optional SAVE argument in the commands above must be included to save the settings to non-volatile memory, or the desired PPS configuration settings must be applied every time the receiver is powered on. Each parameter must be individually saved as it is entered (by adding the optional SAVE at the end of the command).

Event Marker Input

Event marker input

Depending on the application, a GNSS solution may need to be forced and not synchronized with GPS time.

Note: Event marker input is typical of most GNSS boards but is not essential to normal receiver operation. Do not connect this pin if you do not need this function.

The event marker input is 3.3 V CMOS and can be programmed as active low with falling edge synchronization, or active high with rising edge synchronization. The input impedance and capacitance is higher than 10 k Ω and 10 pF respectively, with a threshold of lower than 0.7 V required to recognize the input.

Grounds

Grounds

You must connect all grounds together when connecting the ground pins of the Phantom 40. These are not separate analog and digital grounds that require separate attention. Refer to Table 2-2 through Table 2-3 for pin-out ground information for the Phantom 40.

Shielding

Shielding

The Phantom 40 is a sensitive instrument. When integrated into an enclosure, the Phantom 40 requires shielding from other electronics to ensure optimal operation.

Receiver Mounting

Receiver mounting

The Phantom 40 is a precision instrument. To ensure optimal operation, mount the receiver in a way to minimize vibration and shock.

When mounting the Phantom 40 immediately adjacent to the GPS antenna, Hemisphere GNSS highly recommends shielding the board from the low noise amplifiers (LNA) of the antenna.

Note: This step can be more complex than some integrators initially estimate. Confirm the operation in your application as early in the project as possible.

Chapter 4: Operating the Phantom 40 OEM Board

Overview

Introduction

This chapter provides Phantom 40 operation information, such as communicating with the Phantom 40, firmware, and configuration defaults.

Contents

Topic	See Page
Powering the Phantom 40 On/Off	43
Communicating with the Phantom 40	43
Configuring the Phantom 40	43
LED Indicators	44
Configuring the Data Message Output	45
'THIS' Port and the 'OTHER' Port	45
Saving the Phantom 40 Configuration	47
Using the Phantom 40 WebUI	48

Powering the Phantom 40 On/Off

Powering the Phantom 40

The Phantom 40 is powered by a 3.3 VDC power source. After you connect appropriate power, the Phantom 40 is active.

Communicating with the Phantom 40

Communicating with the Phantom 40

The Phantom 40 features three serial ports (Port A, Port B, Port C) that you can configure independently from one another.

The ports can be configured for NMEA 0183 output, Hemisphere proprietary ASCII and binary messages output, and RTK input/output. You can configure the receiver through any of these ports with Hemisphere GNSS commands (see the HGNSS TRM).

Configuring the Phantom 40

Configuring the Phantom 40

You can configure all aspects of Phantom 40 operation through any serial port using proprietary commands. For information on these commands refer to the HGNSS TRM.

You can configure one of the two firmware applications, set communication port baud rates, select which messages to output on the serial ports and the update message rate' and set various receiver operating parameters.

For a complete list of commands and messages refer to the HGNSS TRM.

To issue commands to the Phantom 40, connect to a terminal program or Hemisphere GNSS' software applications (SLXMon or PocketMax).

LED Indicators

LED Indicators

The Phantom 40 features the following surface-mounted diagnostic LEDs that indicate board status (see Figure 2-6). Table 2-4 lists the LED indicators by name, color and board status.

Table 2-4: LED indicators

LED Indicator	LED Name	Color	Board Status
PWR	Power	Red	Power is on.
GNSS-GNSS	GNSS lock	Orange	The user has a position.
lock	indicator		
DIFF-	Differential	Blinking	A blinking light indicates the
Differential	lock		user is receiving corrections, but
lock	indicator		the corrections aren't decoded
			and no frame synchronization.
			A solid light indicates the
			receiver has locked onto the
		Solid	differential source.
DGPS-DGPS	DGPS	Green	Indicates the user is receiving
position	position		corrections.
	mode		
		Blinking	The LED blinks when the
			estimated accuracy of the
			position does not meet the
			required threshold configured in
			the \$JLIMIT command.

Figure 2-6: Onboard LEDs

Configuring the Data Message Output

Configuring the data message output

The Phantom 40 features three primary bi-directional ports (Ports A, B, and C). You can configure messages for all ports by sending proprietary commands to the Phantom 40 through any port. For a complete list of commands and messages refer to the HGNSS TRM.

'THIS' Port and the 'OTHER' Port

Overview

Both Port A and Port B use the phrases "THIS" and "OTHER" when referring to themselves and each other in NMEA messages.

'THIS' port

'THIS' port is the port you are currently connected to for inputting commands.

To output data through the same port ('THIS' port) you do not need to specify 'THIS' port. For example, when using Port A to request the GPGGA data message be output at 5 Hz on the same port (Port A), issue the following command:

\$JASC,GPGGA,5<CR><LF>

'THIS' Port and the 'OTHER' Port, Continued

'OTHER' port

The 'OTHER' port is either Port A or Port B, whichever one you are not using to issue commands.

If you are using Port A to issue commands, then Port B is the 'OTHER' port, and vice versa. To specify the 'OTHER' port for the data output you need to include 'OTHER' in the command.

For example, if you use Port A to request the GPGGA data message be output at 5 Hz on Port B, issue the following command:

\$JASC,GPGGA,5,OTHER<CR><LF>

When using Port A or Port B to request message be output on Port C, indicate you want the output on Port C.

For example, if you use Port A to request the GPGLL data message be output at 10 Hz on Port C, issue the following command:

\$JASC,GPGLL,10,PORTC<CR><LF>

Port A or Port B are interchangeable to THIS and Other. When entering a command for GLL message on Port B while on Port A, use the following.

\$JASC,GPGLL,10,PORTB<CR><LF>

This can also be done using Port B for Port A.

Saving the Phantom 40 Configuration

Saving the Phantom 40 configuration

Each time you change the Phantom 40 configuration, you should save the configuration to avoid re-configuring the receiver each time you power it on.

To save the configuration, issue the **\$JSAVE** command to the Phantom 40 using a terminal program or Hemisphere GNSS' applications (SLXMon or PocketMax).

The Phantom 40 takes approximately thirty seconds to save the configuration to non-volatile memory and indicates when the configuration has been saved. Below is the standard configuration for the Phantom 40. For more information on these commands refer to the HGNSS TRM.

\$JOFF,PORTA \$JOFF,PORTB \$JOFF,PORTC \$JBAUD,19200,PORTA \$JBAUD,19200,PORTC \$JBAUD,19200,PORTC \$JAGE,2700 \$JLIMIT,10.0 \$JMASK,5 \$JDIFF,WAAS \$JPOS,51.0,-114.0 \$JSMOOTH,LONG900 \$JAIR,AUTO \$JALT,NEVER

\$JNP,7 \$JWAASPRN,AUTO \$JTAU,COG,0.00 \$JTAU,SPEED,0.00

\$JASC,GPGGA,1,PORTA \$JASC,GPGGA,1,PORTB

\$JFREQ,AUTO \$JSAVE

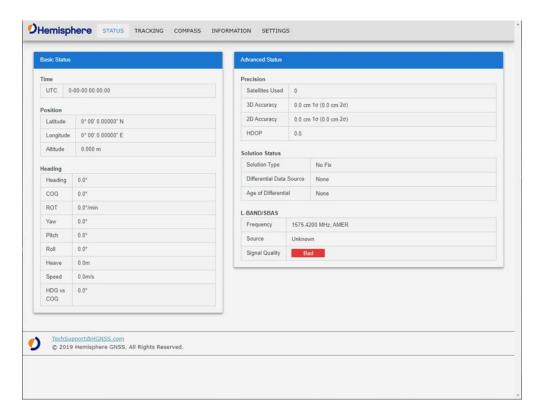
Using the Phantom 40 WebUI

Overview

The Phantom 40 comes equipped with a WebUI interface which may be accessed via the Ethernet interface.

To enable the Ethernet interface in DHCP mode (where the receiver will automatically get an IP address), check the receiver's assigned IP address, and enable the WebUI, use the following steps:

Step	Action
1	Establish a serial connection to the board.
2	Enable the Ethernet interface with a DHCP-assigned IP address using the following command:
	\$JETHERNET,MODE,DHCP The receiver will attempt to retrieve an address from the DHCP server on the network.
3	Enable the WebUI on the Ethernet interface using the following command: \$JETHERNET,WEBUI,ON
4	Send the command \$JETHERNET to check the receiver's assigned IP address.


Alternatively, in place of step 3, you may enable Ethernet support with a statically assigned IP address by sending the command \$JETHERNET,MODE,STATIC,IP,SUBNET,GATEWAY,DNS where IP/subnet/gateway/DNS are each replaced with the relevant IP address for the network configuration. The gateway and DNS parameters are optional.

Open a web browser window and type the IP address reported in the **\$JETHERNET** command.

Overview, continued

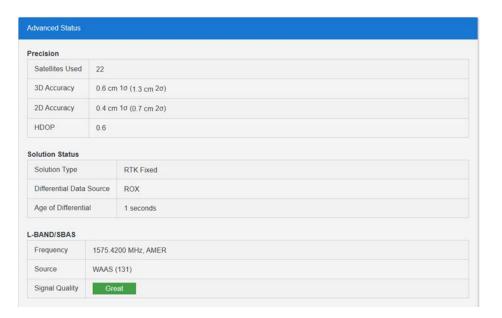
The Phantom 40 **Status** window displays. Click the tabs at the top of each screen to navigate throughout the WebUI.

Status

The Status displays Basic Status and Advanced Status.

Under the left column **Basic Status**, real time data is displayed for the following:

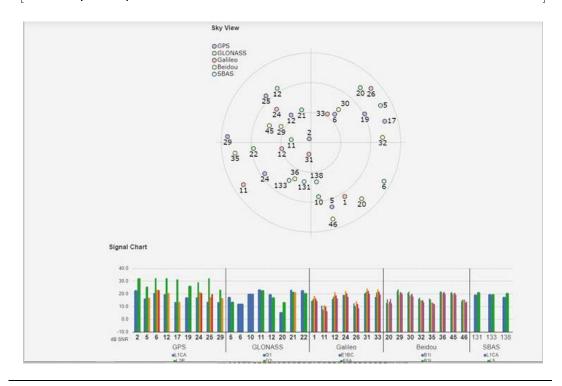
- Time (UTC and Local)
- Position (Latitude, Longitude, Altitude)
- Heading 1


¹ Heading does not apply to the Phantom 40 OEM board.

Status, continued

The right column of the status screen displays **Advanced Status** information:

- Precision (Satellites Used, 3D Accuracy, 2D Accuracy, HDOP)
- Solution Status (Solution Type, Differential Data Source, Age of Differential)
- L-band/SBAS (Frequency, Source, Bit Error Rate, Carrier Lock, Frame Sync, Frame Sync 2)



Tracking

The Tracking window displays the Sky View and the Signal Chart.

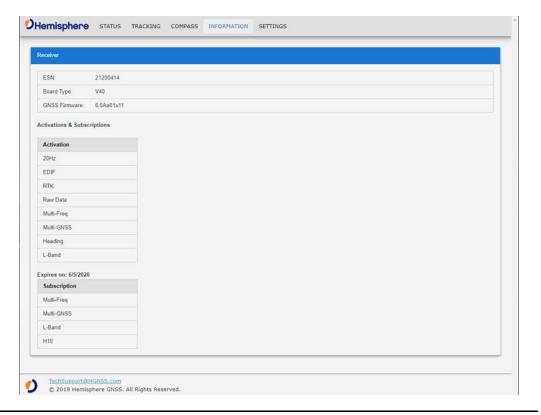
The Sky View plots the azimuth, elevation and SNR values of all tracked satellites (GPS, GLONASS, GALILEO, BeiDou, and SBAS).

Note: Sky View plots in **bold** are used in the solution.

Compass²

Use the Compass to read the Heading and COG data displayed in real time.

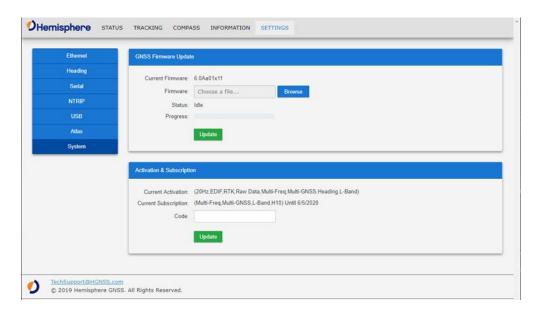
² The Compass screen does not apply to the Phantom 40.



Information

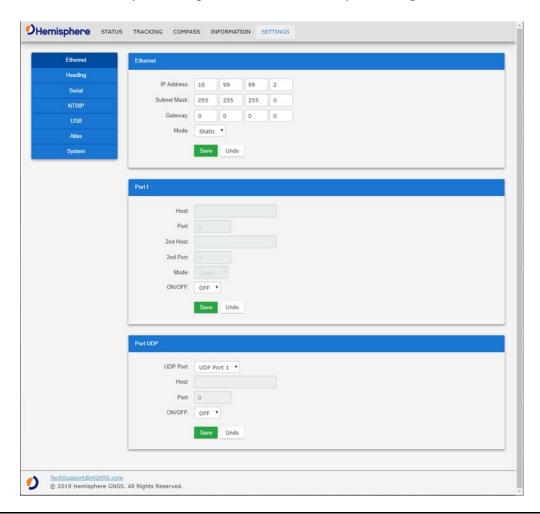
The **Information** window displays the Phantom 40 Receiver and Subscriptions information.

You can find the ESN, Board Type, and GNSS Firmware versions listed at the top of the screen. The Subscriptions expiration date is displayed along with your active subscriptions (in green).


Note: If you need to apply an activation or subscription code, go to **Settings -> System**.

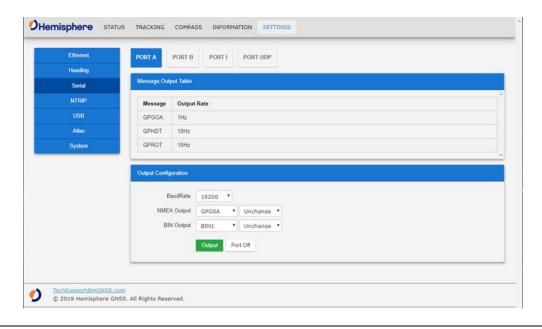
Settings

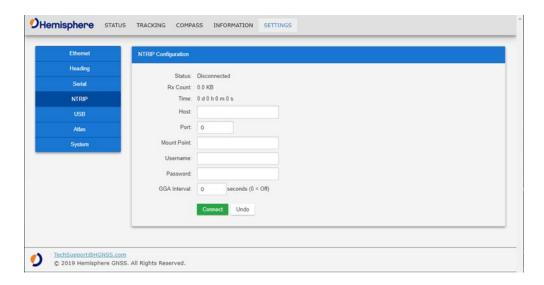
In the **Settings** window, you can configure the settings for the Ethernet, Serial, NTRIP, Atlas, and System.



Settings-Ethernet The Ethernet properties displayed are:

- IP Address
- Subnet Mask
- Gateway
- Mode

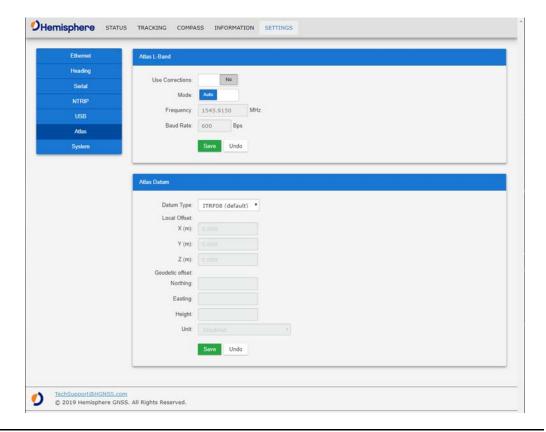

Next to **Mode**, you can click the down-arrow to select from **DHCP** or Static. Click **Save** to save your changes, or **Undo** to cancel your changes.


Settings, Serial

Use Serial Output to configure the baud rate of each serial port (Port A and Port B) and turn off/on specific NMEA 0183 messages and proprietary Hemisphere BIN messages.

Settings, NTRIP

If your Phantom 40 is on a network that has access to the internet, you can use the built-in NTRIP client and enter credentials for an NTRIP caster.

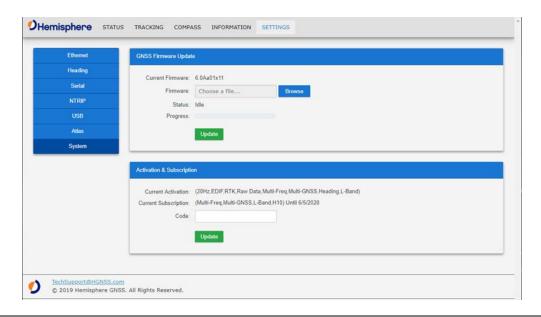


Settings, Atlas

You can configure the receiver to automatically tune to the correct Atlas satellite for your region (suggested), or manually tune to the satellite of your choice.

For datum, you can choose ITRF08, GDA94, or you can enter custom X, Y, Z ECEF **Cartesian** offsets (from ITRF08).

Note: This datum setting only applies to Atlas position solutions.



Settings, System

To update firmware, click **Browse**. Choose the file. Click **Update**.

To add an activation or subscription, type the code, and click **Update**.

Appendix A: Troubleshooting

Overview

Introduction

Appendix A provides troubleshooting for common questions when operating the Phantom 40.

Note: It is important to review each category in detail to eliminate it as a problem.

Contents

Topic	See Page
Troubleshooting	60

Troubleshooting

Phantom 40 troubleshooting

Table A-1: Phantom 40 Troubleshooting

Symptom	Possible Solution
What is the first	Try to isolate the source of the problem. Problems are
thing I do if I have	likely to fall within one of the following categories:
a problem with	Power, communication, and configuration
the operation of	GPS reception and performance
the Phantom 40?	SBAS reception and performance
	External corrections
	Installation
	Shielding and isolating interference
 No data from Phantom 40 	 Check receiver power status (this may be done with a multimeter)
• No	Check the LED power indicator to see if it is illuminated
communication	Confirm communication with Phantom 40 via
	Hemisphere query command \$JI, \$JSHOW
	• Verify that Phantom 40 is locked to GPS satellites (this
	can often be done on the receiving device).
	Check the integrity and connectivity of power and data
	cable connections
Random data	Verify that the RCTM or Bin messages are not being
from	accidentally output (send a \$JSHOW command)
Phantom 40	Verify that the baud rate settings of Phantom 40 and
	remote device match
	Check the serial grounding
No GNSS lock	Check the integrity of antenna cable
	Verify antenna's view of the sky
	Verify the lock status and signal to noise ratio of GPS
	satellites (this can often be done on the receiving
	device or by using SLXMon)

Troubleshooting, Continued

Phantom 40 troubleshooting, continued

Table A-1: Phantom 40 Troubleshooting (continued)

Symptom	Possible Solution
No SBAS	 Check antenna cable integrity Verify antenna's view of the sky, especially towards that SBAS satellites, south in the northern hemisphere. Verify the bit error rate and lock status of SBAS satellites (this can often be done on the receiving device or by using SLXMon -monitor BER value)
No DGNSS or RTK	 Verify that the baud rate of the correction input port matches the baud rate of the external source. Verify the pin-out between the correction source and the correction input port (the "ground" pin and pin-out must be connected, and from the "transmit" from the source must connect to the "receiver" of the correction input port). Use the \$JDIFFX,INCLUDE command to verify that RTCM2, RTCM3, CMR, or ROX (whichever one is applicable) is enabled.
Non-DGPS output	 Verify P40 SBAS and lock status (or external source is locked) Confirm baud rates match the external source correctly Issue a \$JDIFF command and see if the expected differential mode is in fact the current mode

Appendix B: Technical Specifications

Introduction

Appendix B contains the Phantom 40 OEM Board technical specifications.

Contents

Topic	See Page
Phantom 40 Technical Specifications	63

Phantom 40 Technical Specifications

Phantom 40 specifications

Tables B1-B6 provide the technical specifications for the Phantom 40.

Phantom 40 sensor specifications

Table B-1: Phantom 40 Sensor specifications

Item	Spe	ecification	
Receiver type	Multi-Frequency GPS, GLONASS, BeiDou, Galileo,		
	QZSS, NavIC (IRNSS)*, and Atlas		
Signals Received	GPS L1CA/L1P/L1C/L2P/L2C/L5		
	GLONASS G1/G2/G3, P	P1/P2	
	BeiDou B1i/B2i/B3i/B1	.0C/B2A/B2B/A	ACEBOC
	GALILEO E1BC/E5a/E5l	b/E5-AltBOC/E	6BC
	QZSS L1CA/L1C/L2C/L5	5/LEX(L6D and	L6E)
	NaviC (IRNSS)* L5		
	Atlas		
Channels	800+		
GPS Sensitivity	-142 dBm		
SBAS Tracking	3-channel, parallel tracking		
Update Rate	1 Hz standard, 10 Hz, 20 Hz, or 50 Hz optional (with		
	activation)		
Horizontal accuracy		RMS (67%)	2DMRS
			(95%)
	RTK ¹	8 mm + 1	15 mm + 2
		ppm	ppm
	Atlas H10 ^{1,2}	0.04 m	0.08 m
	Atlas H30 ^{1,2}	0.15 m	0.3 m
	Atlas Basic ^{1,2}	0.50 m	1.0 m
	SBAS ¹	0.3 m	0.6 m
	Autonomous, no SA ¹	1.2 m	2.5 m

^{*} NavIC (IRNSS) will be available with a future firmware update.

Phantom 40 Technical Specifications, Continued

Phantom 40 sensor specifications, continued

Table B-1: Phantom 40 Sensor specifications (continued)

Item	Specification
Timing (1 PPS) Precision	20 ns
Cold Start	60 s typical (no almanac or RTC)
Warm Start	30 s typical (almanac and RTC)
Hot Start	10 s typical (almanac, RTC, and position)
Antenna Input Impedance	50 Ω
Maximum Speed	1,850 kph (999 kts)
Maximum Altitude	18,288 m (60,000 ft)

Phantom 40 communication specifications

Table B-2: Phantom 40 Communication specifications

Item	Specification
Serial ports	1 x 3.3V CMOS (1 x RS-232/RS-422*)
	2 x RS-232
	1 x USB Host/Device
	1 x Ethernet 10/100Mbps
	2 x CAN (NMEA 2000, ISO 11783)
Interface Level	3.3V CMOS
Baud Rates	4800 –460,800
Correction I/O Protocol	Hemisphere GNSS proprietary ROX
	format, RTCM v2.3, RTCM v3.2,
	CMR ³ , CMR+ ³
Data I/O Protocol	NMEA 0183, NMEA 2000, Hemisphere proprietary
	ASCII and Binary ²
Timing Output	PPS, CMOS, active high, rising edge sync by default,
	but can be programmed to active low, falling edge
	sync.
	Load and capacitance 10K Ω/10 pF
Event Marker Input	CMOS, programmable rising or falling edge sync

*RS-422 requires a future firmware update.

Phantom 40 Technical Specifications, Continued

Phantom 40 power specifications

Table B-3: Phantom 40 Power specifications

Item	Specification
Input voltage	3.3 VDC +/- 3% typical
Power consumption	1.8 W (All Signals + L-band) typical
Current consumption	545 mA nominal (All Signals + L-band)
	typical
Antenna voltage output	5 VDC maximum
Antenna short circuit protection	Yes
Antenna gain input range	10 to 35 dB typical

Phantom 40 environmental specifications

Table B-4: Phantom 40 Environmental specifications

Item	Specification
Operating	-40°C to +85°C (-40°F to+185°F)
temperature	
Storage	-40°C to +85°C (-40°F to+185°F)
temperature	
Humidity	95% non-condensing (when installed in an enclosure)
Mechanical Shock	EP455 Section 5.14.1
	Operational (when mounted in an enclosure with
	screw mounting holes utilized)
Vibration	EP455 Section 5.15.1 Random
EMC	CE (IEC 60945 Emissions and Immunity)
	FCC Part 15, Subpart B CISPR 22

Phantom 40 Technical Specifications, Continued

Phantom 40 mechanical specifications

Table B-5: Phantom 40 Mechanical specifications

Item	Specification
Dimensions	100 L x 60 W x 10 H (mm) 3.9 L x 2.4 W x 0.4 (in)
Weight	44 g (1.56 oz)
Status indication (LED)	Power, GNSS lock, Differential lock, DGNSS
	position
Power/Data connector	24-pin male header 2 mm pitch
	16-pin male header 2 mm pitch
Antenna connector	MMCX, female, straight

Phantom 40 Lband receiver specifications

Table B-6: Phantom 40 Atlas L-band receiver specifications

Item	Specification
Receiver Type	Single Channel
Channels	1525 to 1560 MHz
Sensitivity	130 dBm
Channel Spacing	5.0 kHz
Satellite Selection	Manual and Automatic
Reacquisition Time	15 seconds (typical)

¹ Depends on multipath environment, number of satellites in view, satellite geometry, and ionospheric activity

² Hemisphere GNSS proprietary

³ CMR and CMR+ do not cover proprietary messages outside of the typical standard

Appendix C: Frequently Asked Questions (FAQ)

Overview

Introduction

Appendix C contains some of the most frequently asked questions about the Phantom 40 OEM board.

Contents

Topic	See Page
FAQ	69

FAQ

Integration

The following is a list of common questions and solutions when integrating the Phantom 40 OEM board.

Question	Solution
Do I need to use the PPS and/or	No, these are not necessary for
event marker?	Phantom 40 operation.
What should I do with the PPS signal	Do not connect.
if I do not want to use it?	
What should I do with the manual	Do not connect the pin because this
mark input if I am not going to use it?	signal is active low with an internal pull-up.
Do I need to use the lock indicators?	No, these are present for applications where it is desirable to have an LED visible to the user. These signals need to be transistor-buffered, as these lines can only offer 1 mA. Depending on the product and the application, LEDs can be very useful to the end user. These signals are active low.
Do I need to use a shield-can for the Phantom 40?	Not necessarily, but you may need to if there are RF interference issues, such as if the Phantom 40 interferes with other devices. A shield-can is a good start in terms of investigating the benefit. If you are designing a smart antenna system, a shield-can is likely needed. Hemisphere GNSS recommends that you always conduct an RF pre- scan when integrating OEM boards.

FAQ, Continued

Integration, continued

Question	Solution
If my company wishes to integrate	Hemisphere GNSS recommends you
this product, what type of	have sufficient engineering resources
engineering resources will I need to	with the appropriate skills in and
do this successfully?	understanding of the following:
	Electronic design (including power
	supplies and level translation)
	• RF implications of working with GPS
	equipment
	Circuit design and layout
	Mechanical design and layout
What type of assistance can I expect	Integration of a GNSS board has such
from Hemisphere GNSS when	benefits as:
integrating Phantom 40?	Lower system cost
	Improved branding (rather than
	relabeling an existing product)
	Better control of system design
	among others
	• As an integrator, you are
	responsible for ensuring that the
	correct resources are in place to
	technically complete it.
	Hemisphere GNSS will provide
	reasonable assistance.
	However, Hemisphere GNSS does
	not have dedicated engineering
	resources for in- depth integration
	support. Hemisphere GNSS will do
	its best to provide support as
	necessary, but you should expect to
	have reasonable expertise to use
	this Integrator's Guide.

FAQ, Continued

Support and Repair

Question	Solution
How do I solve a problem I cannot	Hemisphere GNSS recommends
isolate?	contacting the dealer first. With
	their experience with this product,
	and other products from
	Hemisphere GNSS, they should be
	able to help isolate a problem. If
	the issue is beyond the capability or
	experience of the dealer.
	Hemisphere GNSS Technical
	Support is available from 8:00 AM
	to 5:00 PM Mountain Standard
	Time, Monday through Friday.
	• See "Technical Support" for
	Technical Support contact
	information.

FAQ, Continued

Power, Communication, and Configuration

Question	Solution
Why isn't my Phantom 40	This could be one of a few issues:
communicating?	• Examine the Phantom 40 cables and
	connectors for signs of damage or offset.
	• Ensure the Phantom 40 system is properly
	powered with the correct voltage.
	• Ensure there is a good connection to the
	power supply since it is required to
	terminate the power input with the
	connector.
	Check the documentation of the receiving
	device, if not a PC, to ensure the transmit
	line from the Phantom 40 is connected to
	the receive line of the other device. Also,
	ensure the signal grounds are connected.
	If the Phantom 40 is connected to a custon
	or special device, ensure the serial
	connection to it does not have any
	incompatible signal lines present that
	prevent proper communication.
	Make sure the baud rate of the Phantom
	40 matches the other device. The other
	device must also support an 8-data bit, 1
	stop bit, no parity port configuration (8-N-
	 Some devices support different settings that may be user configurable. Ensure the
	settings match.
	 Consult the troubleshooting section of the
	other device's documentation to determin
	if there may be a problem with the
	equipment.
	equipinient.

Power, Communication, and Configuration, continued

Question	Solution	
Am I able to configure two serial	Yes, all the ports are independent.	
ports with different baud rates?	For example, you may set one port to 4800 and another port to 19200.	
Am I able to have the Phantom 40 output different NMEA messages through multiple ports?	Yes, different NMEA messages can be sent to the serial ports you choose. These NMEA messages may also be at different update rates. A high enough baud rate is needed to transmit all the data; otherwise, some data may not be transmitted.	
How can I determine the current configuration of the Phantom 40?	The \$JSHOW command will request the configuration information from the Phantom 40. The response will be similar to: \$>JSHOW,BAUD,19200 \$>JSHOW,BIN,1,5.0 \$>JSHOW,BAUD,4800,OTHER \$>JSHOW,ASC,GPGGA,1.0,OTHER \$>JSHOW,ASC,GPVTG,1.0,OTHER \$>JSHOW,ASC,GPGSA,1.0,OTHER	
How can I be sure the configuration will be saved for the subsequent power cycle?	 Query the receiver to make sure the current configuration is correct by issuing a \$JSHOW command. If not, make the necessary changes and reissue the \$JSHOW command. Once the current configuration is acceptable, issue a \$JSAVE command and wait for the receiver to indicate the save is complete. Do not power off the receiver until the "save complete" message appears. 	

Power, Communication, and Configuration, continued

Question	Solution	
How do I change the baud rate of a port from that port?	Connect at the current baud rate of the Phantom 40 port and then issue a \$JBAUD command to change the port baud rate to the desired rate. Now change the baud rate in your application to the desired rate.	
What is the best software tool to use to communicate with the Phantom 40 and configure it?	Hemisphere GNSS uses different software applications:	
	 SLXMon - Available at www.hgnss.com. This application is a very useful tool for graphically viewing tracking performance and position accuracy, and for recording data. It can also configure message output and port settings. SLXMon runs on Windows 95 or higher. PocketMax- Available at www.hgnss.com. Similar to SLXMon, you can use this application to graphically view tracking performance and position accuracy, record data, and configure message output and port settings. PocketMax runs on multiple Windows platforms using the Windows .NET framework. 	

GNSS Reception and Performance

Question	Solution	
How do I know what the Phantom 40 is doing?	 The Phantom 40 supports standard NMEA data messages. The \$GPGSV and Bin99 data messages contain satellite tracking and SNR information. If available, the computed position is contained in the \$GPGGA message. The Phantom 40 has surfacemounted status LEDs that indicate receiver status. 	
Do I have to be careful when using the Phantom 40 to ensure it tracks properly?	 For best performance, the Phantom 40's antenna must have a clear view of the sky for satellite tracking. The Phantom 40 can tolerate a certain amount of signal blockage because redundant satellites are often available. Only four satellites are required for a position; however, the more satellites that are used, the greater the positioning accuracy. 	

SBAS Reception and Performance

Question	Solution	
How do I know if the Phantom 40 has acquired an SBAS or Atlas signal?		
How do I know if the Phantom 40 has a differentially corrected or RTK-corrected position?	 The Phantom 40 outputs the \$GPGGA message as the main positioning data message. This message contains a quality fix value that describes the GPS status. If this value is 2, the position is differentially corrected; if this value is 4 or 5, the position is RTK or Atlas corrected. The SLXMon and PocketMax utilities provide this information without needing to use NMEA commands. 	

SBAS Reception and Performance, continued

Question	Solution		
How do I select an SBAS satellite?	 By default, the Phantom 40 will automatically attempt to track the appropriate SBAS satellites. If multiple satellites are available, the one with the lowest BER value is selected to be used to decode the corrections. You can manually select which SBAS satellites to track (not recommended). Refer to the HGNSS TRM. 		
How will the antenna selection and mounting affect Phantom 40 performance?	 For best results select a multipathresistant antenna. Ensure the antenna tracks all the available signals for the receiver. It's possible other GNSS antennas are possible. Mount the antenna with the best possible view of the sky and in a location with the lowest possible multipath. Using a magnetic mount for the antenna will not affect performance. If you are using an antenna from another manufacturer, be mindful all specifications provided in this manual are based off of Hemisphere GNSS antennas, and the results may vary with if you are using an antenna from another manufacturer. 		

Index

aRTK	10, 12, 16	PocketMax	
Athena RTK	, ,		
Atlas L-band	15, 16, 67	RF Input	•
		SBAS	
Ethernet	34	Serial ports	33, 64
event marker	40	Tracer	
Event marker input	40	USB port	32.34

End User License Agreement

End User license agreement

IMPORTANT - This is an agreement (the "Agreement") between you, the end purchaser ("Licensee") and Hemisphere GNSS Inc. ("Hemisphere") which permits Licensee to use the Hemisphere software (the "Software") that accompanies this Agreement. This Software may be licensed on a standalone basis or may be embedded in a Product. Please read and ensure that you understand this Agreement before installing or using the Software Update or using a Product.

In this agreement any product that has Software embedded in it at the time of sale to the Licensee shall be referred to as a "**Product**". As well, in this Agreement, the use of a Product shall be deemed to be use of the Software which is embedded in the Product.

BY INSTALLING OR USING THE SOFTWARE UPDATE OR THE PRODUCT, LICENSEE THEREBY AGREES TO BE LEGALLY BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THESE TERMS, (I) DO NOT INSTALL OR USE THE SOFTWARE, AND (II) IF YOU ARE INSTALLING AN UPDATE TO THE SOFTWARE, DO NOT INSTALL THE UPDATE AND PROMPTLY DESTROY IT.

HEMISPHERE PROVIDES LIMITED WARRANTIES IN RELATION TO THE SOFTWARE. AS WELL, THOSE WHO USE THE EMBEDDED SOFTWARE DO SO AT THEIR OWN RISK. YOU SHOULD UNDERSTAND THE IMPORTANCE OF THESE AND OTHER LIMITATIONS SET OUT IN THIS AGREEMENT BEFORE INSTALLING OR USING THE SOFTWARE OR THE PRODUCT.

- LICENSE. Hemisphere hereby grants to Licensee a non-transferable and non-exclusive license to use the Software as embedded in a Product and all Updates (collectively the "Software"), solely in binary executable form.
- 2. RESTRICTIONS ON USE. Licensee agrees that Licensee and its employees will not directly or indirectly, in any manner whatsoever:
 - a. install or use more copies of the Software than the number of copies that have been licensed:
 - use or install the Software in connection with any product other than the Product the Software was intended to be used or installed on as set out in the documentation that accompanies the Software.
 - copy any of the Software or any written materials for any purpose except as part of Licensee's normal backup processes;
 - d. modify or create derivative works based on the Software;
 - e. sub-license, rent, lease, loan or distribute the Software;
 - f. permit any third party to use the Software;
 - use or operate Product for the benefit of any third party in any type of service outsourcing, application service, provider service or service bureau capacity;
 - reverse engineer, decompile or disassemble the Software or otherwise reduce it to a human perceivable form;
 - Assign this Agreement or sell or otherwise transfer the Software to any other party except as part of the sale or transfer of the whole Product.
- UPDATES. At Hemisphere's discretion Hemisphere may make Updates available to Licensee. An update ("Update") means any update to the Software that is made available to Licensee including error corrections, enhancements and other modifications. Licensee may access, download and install Updates during the Warranty Period only. All Updates that Licensee downloads, installs or uses shall be deemed to be Software and subject to this Agreement. Hemisphere reserves the right to modify the Product without any obligation to notify, supply or install any improvements or alterations to existing Software.
- 4. SUPPORT. Hemisphere may make available directly or through its authorized dealers telephone and email support for the Software. Contact Hemisphere to find the authorized dealer near you. As well, Hemisphere may make available user and technical documentation regarding the Software. Hemisphere reserves the right to reduce and limit access to such support at any time.

End User License Agreement, Continued

End User license agreement, continued

- 5. BACKUPS AND RECOVERY. Licensee shall back-up all data used, created or stored by the Software on a regular basis as necessary to enable proper recovery of the data and related systems and processes in the event of a malfunction in the Software or any loss or corruption of data caused by the Software. Licensee shall assume all risks of loss or damage for any failure to comply with the foregoing.
- OWNERSHIP. Hemisphere and its suppliers own all rights, title and interest in and to the Software and related materials, including all intellectual property rights. The Software is licensed to Licensee, not sold.
- 7. TRADEMARKS. "Hemisphere GNSS", "Crescent", "Eclipse" and the associated logos are trademarks of Hemisphere. Other trademarks are the property of their respective owners. Licensee may not use any of these trademarks without the consent of their respective owners.
- LIMITED WARRANTY. Hemisphere warrants solely to the Licensee, subject to the exclusions and procedures set forth herein below, that for a period of one (1) year from the original date of purchase of the Product in which it is embedded (the "Warranty Period"), the Software, under normal use and maintenance, will conform in all material respects to the documentation provided with the Software and any media will be free of defects in materials and workmanship. For any Update, Hemisphere warrants, for 90 days from performance or delivery, or for the balance of the original Warranty Period, whichever is greater, that the Update, under normal use and maintenance, will conform in all material respects to the documentation provided with the Update and any media will be free of defects in materials and workmanship. Notwithstanding the foregoing, Hemisphere does not warrant that the Software will meet Licensee's requirements or that its operation will be error free.
- 9. WARRANTY EXCLUSIONS. The warranty set forth in Section (8) will not apply to any deficiencies caused by (a) the Product not being used as described in the documentation supplied to Licensee, (b) the Software having been altered, modified or converted in any way by anyone other than Hemisphere approved by Hemisphere, (c) any malfunction of Licensee's equipment or other software, or (d) damage occurring in transit or due to any accident, abuse, misuse, improper installation, lightning (or other electrical discharge) or neglect other than that caused by Hemisphere. Hemisphere GNSS does not warrant or guarantee the precision or accuracy of positions obtained when using the Software (whether standalone or embedded in a Product). The Product and the Software is not intended and should not be used as the primary means of navigation or for use in safety of life applications. The potential positioning and navigation accuracy obtainable with the Software as stated in the Product or Software documentation serves to provide only an estimate of achievable accuracy based on specifications provided by the US Department of Defense for GPS positioning and DGPS service provider performance specifications, where applicable.
- WARRANTY DISCLAIMER. EXCEPT AS EXPRESSLY SET OUT IN THIS AGREEMENT, HEMISPHERE MAKES NO REPRESENTATION, WARRANTY OR CONDITION OF ANY KIND TO LICENSEE, WHETHER VERBAL OR WRITTEN AND HEREBY DISCLAIMS ALL REPRESENTATIONS, WARRANTIES AND CONDITIONS OF ANY KIND INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, ACCURACY, RELIABILITY OR THAT THE USE OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE AND HEREBY DISCLAIMS ALL REPRESENTATIONS, WARRANTIES AND CONDITIONS ARISING AS A RESULT OF CUSTOM, USAGE OR TRADE AND THOSE ARISING UNDER STATUTE.
- LIMITS ON WARRANTY DISCLAIMER. Some jurisdictions do not allow the exclusion of implied warranties or conditions, so some of the above exclusions may not apply to Licensee. In that case, any implied warranties or conditions which would then otherwise arise will be limited in duration to ninety (90) days from the date of the license of the Software or the purchase of the Product. The warranties given herein give Licensee specific legal rights and Licensee may have other rights which may vary from jurisdiction to jurisdiction.
- 12 CHANGE TO WARRANTY. No employee or agent of Hemisphere is authorized to change the warranty provided or the limitation or disclaimer of warranty provisions. All such changes will only be effective if pursuant to a separate agreement signed by senior officers of the respective parties.

End User License Agreement, Continued

End User license agreement, continued

- WARRANTY CLAIM. In the event Licensee has a warranty claim Licensee must first check for and install all Updates that are made available. The warranty will not otherwise be honored. Proof of purchase may be required. Hemisphere does not honor claims asserted after the end of the Warranty Period.
- LICENSEE REMEDIES. In all cases which involve a failure of the Software to conform in any material respect to the documentation during the Warranty Period or a breach of a warranty, Hemisphere's sole obligation and liability, and Licensee's sole and exclusive remedy, is for Hemisphere, at Hemisphere's option, to (a) repair the Software, (b) replace the Software with software conforming to the documentation, or (c) if Hemisphere is unable, on a reasonable commercial basis, to repair the Software or to replace the Software with conforming software within ninety (90) days, to terminate this Agreement and thereafter Licensee shall cease using the Software. Hemisphere will also issue a refund for the price paid by Licensee less an amount on account of amortization, calculated on a straight-line basis over a deemed useful life of three (3) years.
- LIMITATION OF LIABILITY. IN NO EVENT WILL HEMISPHERE BE LIABLE TO LICENSEE FOR ANY INCIDENTAL, CONSEQUENTIAL, SPECIAL OR INDIRECT DAMAGES INCLUDING ARISING IN RELATION TO ANY LOSS OF DATA, INCOME, REVENUE, GOODWILL OR ANTICIPATED SAVINGS EVEN IF HEMISPHERE HAS BEEN INFORMED OFTHE POSSIBILITY OF SUCH LOSS OR DAMAGE. FURTHER, IN NO EVENT WILL HEMISPHERE'S TOTAL CUMULATIVE LIABILITY HEREUNDER, FROM ALL CAUSES OF ACTION OF ANY KIND, EXCEED THE TOTAL AMOUNT PAID BY LICENSEE TO HEMISPHERE TO PURCHASE THE PRODUCT. THIS LIMITATION AND EXCLUSION APPLIES IRRESPECTIVE OF THE CAUSE OF ACTION, INCLUDING BUT NOT LIMITED TO BREACH OF CONTRACT, NEGLIGENCE, STRICT LIABILITY, TORT, BREACH OF WARRANTY, MISREPRESENTATION OR ANY OTHER LEGAL THEORY AND WILL SURVIVE A FUNDAMENTAL BREACH.
- LIMITS ON LIMITATION OF LIABILITY. Some jurisdictions do not allow for the limitation or exclusion of liability for incidental or consequential damages, so the above limitation or exclusion may not apply to Licensee and Licensee may also have other legal rights which may vary from jurisdiction to jurisdiction.
- 17. BASIS OF BARGAIN. Licensee agrees and acknowledges that Hemisphere has set its prices and the parties have entered into this Agreement in reliance on the limited warranties, warranty disclaimers and limitations of liability set forth herein, that the same reflect an agreed-to allocation of risk between the parties (including the risk that a remedy may fail of its essential purpose and cause consequential loss), and that the same forms an essential basis of the bargain between the parties. Licensee agrees and acknowledges that Hemisphere would not have been able to sell the Product at the amount charged on an economic basis without such limitations.
- PROPRIETARY RIGHTS INDEMNITY. Hemisphere shall indemnify, defend and hold harmless Licensee from and against any and all actions, claims, demands, proceedings, liabilities, direct damages, judgments, settlements, fines, penalties, costs and expenses, including royalties and attorneys' fees and related costs, in connection with or arising out of any actual infringement of any third party patent, copyright or other intellectual property right by the Software or by its use, in accordance with this Agreement and documentation, PROVIDED THAT: (a) Hemisphere has the right to assume full control over any action, claim, demand or proceeding, (b) Licensee shall promptly notify Hemisphere of any such action, claim, demand, or proceeding, and (c) Licensee shall give Hemisphere such reasonable assistance and tangible material as is reasonably available to Licensee for the defense of the action, claim, demand or proceeding. Licensee shall not settle or compromise any of same for which Hemisphere has agreed to assume responsibility without Hemisphere's prior written consent. Licensee may, at its sole cost and expense, retain separate counsel from the counsel utilized or retained by Hemisphere. 19. INFRINGEMENT. If use of the Software may be enjoined due to a claim of infringement by a third party then, at its sole discretion and expense, Hemisphere may do one of the following: (a) negotiate a license or other agreement so that the Product is no longer subject to such a potential claim, (b) modify the Product so that it becomes non-infringing, provided such modification can be accomplished without materially affecting the performance and functionality of the Product,

End User License Agreement, Continued

End User license agreement, continued

- (c) replace the Software, or the Product, with non-infringing software, or product, of equal or better performance and quality, or (d) if none of the foregoing can be done on a commercially reasonable basis, terminate this license and Licensee shall stop using the Product and Hemisphere shall refund the price paid by Licensee less an amount on account of amortization, calculated on a straight-line basis over a deemed useful life of three (3) years.
- 19. The foregoing sets out the entire liability of Hemisphere and the sole obligations of Hemisphere to Licensee in respect of any claim that the Software or its use infringes any third party rights.
- INDEMNIFICATION. Except in relation to an infringement action, Licensee shall indemnify and hold Hemisphere harmless from any and all claims, damages, losses, liabilities, costs and expenses (including reasonable fees of lawyers and other professionals) arising out of or in connection with Licensee's use of the Product, whether direct or indirect, including without limiting the foregoing, loss of data, loss of profit or business interruption. TERMINATION. Licensee may terminate this Agreement at any time without cause. Hemisphere may terminate this Agreement on 30 days notice to Licensee if Licensee fails to materially comply with each provision of this Agreement unless such default is cured within the 30 days. Any such termination by a party shall be in addition to and without prejudice to such rights and remedies as may be available, including injunction and other equitable remedies. Upon receipt by Licensee of written notice of termination from Hemisphere or termination by Licensee, Licensee shall at the end of any notice period (a) cease using the Software; and (b) return to Hemisphere (or destroy and provide a certificate of a Senior Officer attesting to such destruction) the Software and all related material and any magnetic or optical media provided to Licensee. The provisions of Sections 6), 7), 8), 9), 10), 15), 21), 26) and 27) herein shall survive the expiration or termination of this Agreement for any reason.
- 21. EXPORT RESTRICTIONS. Licensee agrees that Licensee will comply with all export control legislation of Canada, the United States, Australia and any other applicable country's laws and regulations, whether under the Arms Export Control Act, the International Traffic in Arms Regulations, the Export Administration Regulations, the regulations of the United States Departments of Commerce, State, and Treasury, or otherwise as well as the export control legislation of all other countries.
- PRODUCT COMPONENTS. The Product may contain third party components. Those third party components may be subject to additional terms and conditions. Licensee is required to agree to those terms and conditions in order to use the Product.
- 23. FORCE MAJEURE EVENT. Neither party will have the right to claim damages as a result of the other's inability to perform or any delay in performance due to unforeseeable circumstances beyond its reasonable control, such as labor disputes, strikes, lockouts, war, riot, insurrection, epidemic, Internet virus attack, Internet failure, supplier failure, act of God, or governmental action not the fault of the non-performing party.
- FORUM FOR DISPUTES. The parties agree that the courts located in Calgary, Alberta, Canada and the courts of appeal there from will have exclusive jurisdiction to resolve any disputes between Licensee and Hemisphere concerning this Agreement or Licensee's use or inability to use the Software and the parties hereby irrevocably agree to attorn to the jurisdiction of those courts. Notwithstanding the foregoing, either party may apply to any court of competent jurisdiction for injunctive relief.
- APPLICABLE LAW. This Agreement shall be governed by the laws of the Province of Alberta, Canada, exclusive of any of its choice of law and conflicts of law jurisprudence.
- 26 CISG. The United Nations Convention on Contracts for the International Sale of Goods will not apply to this Agreement or any transaction hereunder.

GENERAL. This is the entire agreement between Licensee and Hemisphere relating to the Product and Licensee's use of the same, and supersedes all prior, collateral or contemporaneous oral or written representations, warranties or agreements regarding the same. No amendment to or modification of this Agreement will be binding unless in writing and signed by duly authorized representatives of the parties. Any and all terms and conditions set out in any correspondence between the parties or set out in a purchase order which are different from or in addition to the terms and conditions set forth herein, shall have no application and no written notice of same shall be required. In the event that one or more of the provisions of this Agreement is found to be illegal or unenforceable, this Agreement shall not be rendered inoperative but the remaining provisions shall continue in full force and effect.

Warranty Notice

Warranty notice

COVERED PRODUCTS: This warranty covers all products manufactured by Hemisphere GNSS and purchased by the end purchaser (the "Products"), unless otherwise specifically and expressly agreed in writing by Hemisphere GNSS.

LIMITED WARRANTY: Hemisphere GNSS warrants solely to the end purchaser of the Products, subject to the exclusions and procedures set forth below, that the Products sold to such end purchaser and its internal components shall be free, under normal use and maintenance, from defects in materials, and workmanship and will substantially conform to Hemisphere GNSS's applicable specifications for the Product, for a period of 12 months from delivery of such Product to such end purchaser (the "Warranty Period"). Repairs and replacement components for the Products are warranted, subject to the exclusions and procedures set forth below, to be free, under normal use and maintenance, from defects in material and workmanship, and will substantially conform to Hemisphere GNSS's applicable specifications for the Product, for 90 days from performance or delivery, or for the balance of the original Warranty Period, whichever is greater.

EXCLUSION OF ALL OTHER WARRANTIES. The LIMITED WARRANTY shall apply only if the Product is properly and correctly installed, configured, interfaced, maintained, stored, and operated in accordance with Hemisphere GNSS relevant User's Manual and Specifications, AND the Product is not modified or misused. The Product is provided "AS IS" and the implied warranties of MERCHANTABILITY and FITNESS FOR A PARTICULAR PURPOSE and ALL OTHER WARRANTIES,

express, implied or arising by statute, by course of dealing or by trade usage, in connection with the design, sale, installation, service or use of any products or any component thereof, are EXCLUDED from this transaction and shall not apply to the Product. The LIMITED WARRANTY is IN LIEU OF any other warranty, express or implied, including but not limited to, any warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, title, and non-infringement.

LIMITATION OF REMEDIES. The purchaser's EXCLUSIVE REMEDY against Hemisphere GNSS shall be, at Hemisphere GNSS's option, the repair or replacement of any defective Product or components thereof. The purchaser shall notify Hemisphere GNSS or a Hemisphere GNSS's approved service center immediately of any defect. Repairs shall be made through a Hemisphere GNSS approved service center only. Repair, modification or service of Hemisphere GNSS products by any party other than a Hemisphere GNSS approved service center shall render this warranty null and void. The remedy in this paragraph shall only be applied in the event that the Product is properly and correctly installed, configured, interfaced, maintained, stored, and operated in accordance with Hemisphere GNSS's relevant User's Manual and Specifications, AND the Product is not modified or misused. NO OTHER REMEDY (INCLUDING, BUT NOT LIMITED TO, SPECIAL, INDIRECT, INCIDENTAL, CONSEQUENTIAL OR CONTINGENT DAMAGES FOR LOST PROFITS, LOST SALES, INJURY TO PERSON OR PROPERTY, OR ANY OTHER INCIDENTAL OR CONSEQUENTIAL LOSS) SHALL BE AVAILABLE

TO PURCHASER, even if Hemisphere GNSS has been advised of the possibility of such damages. Without limiting the foregoing, Hemisphere GNSS shall not be liable for any damages of any kind resulting from installation, use, quality, performance or accuracy of any Product.

HEMISPHERE IS NOT RESPONSIBLE FOR PURCHASER'S NEGLIGENCE OR UNAUTHORIZED USES OF THE PRODUCT. IN NO EVENT SHALL Hemisphere GNSS BE IN ANY WAY RESPONSIBLE FOR ANY DAMAGES RESULTING FROM PURCHASER'S OWN NEGLIGENCE, OR FROM OPERATION OF THE PRODUCT IN ANY WAY OTHER THAN AS SPECIFIED IN Hemisphere GNSS's RELEVANT USER'S MANUAL AND SPECIFICATIONS. Hemisphere GNSS is NOT RESPONSIBLE for defects or performance problems resulting from (1) misuse, abuse, improper installation, neglect of Product; (2) the utilization of the Product with hardware or software products, information, data, systems, interfaces or devices not made, supplied or specified by Hemisphere GNSS; (3) the operation of the Product under any specification other than, or in addition to, the specifications set forth in Hemisphere GNSS's relevant User's Manual and Specifications; (4) damage caused by accident or natural events, such as lightning (or other electrical discharge) or fresh/ salt water immersion of Product; (5) damage occurring in transit; (6) normal wear and tear; or (7) the operation or failure of operation of any satellite-based positioning system or differential correction service; or the availability or performance of any satellite-based positioning signal or differential correction signal.

THE PURCHASER IS RESPONSIBLE FOR OPERATING THE VEHICLE SAFELY. The purchaser is solely responsible for the safe operation of the vehicle used in connection with the Product, and for maintaining proper system control settings. UNSAFE DRIVING OR SYSTEM CONTROL SETTINGS CAN RESULT IN PROPERTY DAMAGE, INJURY, OR DEATH.

Warranty Notice, Continued

Warranty notice, continued

The purchaser is solely responsible for his/her safety and for the safety of others. The purchaser is solely responsible for maintaining control of the automated steering system at all times. THE PURCHASER IS SOLELY RESPONSIBLE FOR ENSURING THE PRODUCT IS PROPERLY AND CORRECTLY INSTALLED, CONFIGURED, INTERFACED, MAINTAINED, STORED, AND OPERATED IN ACCORDANCE WITH Hemisphere GNSS's RELEVANT USER'S MANUAL AND SPECIFICATIONS. Hemisphere GNSS does not warrant or guarantee the positioning and navigation precision or accuracy obtained when using Products. Products are not intended for primary navigation or for use in safety of life applications. The potential accuracy of Products as stated in Hemisphere GNSS literature and/or Product specifications serves to provide only an estimate of achievable accuracy based on performance specifications provided by the satellite service operator (i.e. US Department of Defense in the case of GPS and differential correction service provider. Hemisphere GNSS reserves the right to modify Products without any obligation to notify, supply or install any improvements or alterations to existing Products.

GOVERNING LAW. This agreement and any disputes relating to, concerning or based upon the Product shall be governed by and interpreted in accordance with the laws of the State of Arizona.

OBTAINING WARRANTY SERVICE. In order to obtain warranty service, the end purchaser must bring the Product to a Hemisphere GNSS approved service center along with the end purchaser's proof of purchase. Hemisphere GNSS does not warrant claims asserted after the end of the warranty period. For any questions regarding warranty service or to obtain information regarding the location of any of Hemisphere GNSS approved service center, contact Hemisphere GNSS at the following address:

Hemisphere GNSS

8515 E. Anderson Drive Scottsdale, AZ 85255, USA

Phone: +1-480-348-6380 Fax: +1-480-270-5070

TECHSUPPORT@HREGNSS.COM WWW.HGNSS.COM

Hemisphere GNSS Inc. 8515 East Anderson Drive Scottsdale, Arizona, US 85255 Phone: 480-348-6380

Fax: 480-270-5070
PRECISION@HGNSS.COM
WWW.HGNSS.COM